Part Number Hot Search : 
1SMB5950 ADMTV102 AT89S52 EPA3482S ISL9200 BGU70 2SA1634 T54ACS
Product Description
Full Text Search
 

To Download QL7180 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 QL7180 EclipsePlus Data Sheet
******
Combining Performance, Density, and Embedded RAM
Device Highlights
Flexible Programmable Logic
* 0.25 m five layer metal CMOS Process * 2.5 V VCC, 2.5/3.3 V Drive Capable I/O * 4,032 Logic Cells * 583,008 Max System Gates * Up to 347 I/O Pins
Advanced Clock Network
* Nine Global Clock Networks: * One Dedicated * Eight Programmable * 20 Quad-Net Networks--five per Quadrant * 16 I/O Control--two per I/O Bank * Four phase locked loops
Embedded Computational Units Embedded Dual Port SRAM
* Thirty-six 2,304-bit Dual Port High
ECUs provide integrated Multiply, Add, and Accumulate Functions.
Performance SRAM Blocks
* 82,900 RAM Bits * RAM/ROM/FIFO Wizard for Automatic
Configuration
* Configurable and Cascadable
PLL
Memory - Dual Port RAM Embedded Computational Units
PLL
Programmable I/O
* High performance Enhanced I/O (EIO)--
High Speed Logic Cells 583K Gates
PLL Memory - Dual Port RAM PLL
less than 3 ns Tco
* Programmable Slew Rate Control * Programmable I/O Standards: * LVTTL, LVCMOS, PCI, GTL+, SSTL2, Figure 1: EclipsePlus Block Diagram
and SSTL3
* Eight Independent I/O Banks * Three Register Configurations: Input,
Output, and Output Enable
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
1
QL7180 EclipsePlus Data Sheet Rev C
Electrical Specifications
AC Characteristics*
*(at VCC = 2.5 V, TA = 25 C, Typical Corner, Speed Grade = -7 (K = 1.00)) The AC Specifications are provided from Table 1 to Table 9. Logic Cell diagrams and waveforms are provided from Figure 2 to Figure 15.
Figure 2: EclipsePlus Logic Cell
Table 1: Logic Cells Symbol Logic Cells tPD tSU tHL tCO tCWHI tCWLO tSET tRESET tSW tRW Combinatorial Delay of the longest path: time taken by the combinatorial circuit to output Setup time: time the synchronous input of the flip flop must be stable before the active clock edge Hold time: time the synchronous input of the flip flop must be stable after the active clock edge Clock to out delay: the amount of time taken by the flip flop to output after the active clock edge. Clock High Time: required minimum time the clock stays high Clock Low Time: required minimum time that the clock stays low Set Delay: time between when the flip flop is "set" (high) and when the output is consequently "set" (high) Reset Delay: time between when the flip flop is "reset" (low) and when the output is consequently "reset" (low) Set Width: time that the SET signal remains high/low Reset Width: time that the RESET signal remains high/low Parameter Value (ns) Min 0.205 0.231 0 0.46 0.46 0.3 0.3 Max 1.01 0.427 0.585 0.658 -
2 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
SET D CLK RESET Q
Figure 3: Logic Cell Flip-Flop
CLK tCWHI (min) SET tCWLO (min)
RESET
Q tRESET tRW
tSET
tSW
Figure 4: Logic Cell Flip-Flop Timings--First Waveform
CLK
D
tSU
tHL
Q tCO
Figure 5: Logic Cell Flip-Flop Timings--Second Waveform
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
3
QL7180 EclipsePlus Data Sheet Rev C
Quad net
Figure 6: EclipsePlus Global Clock Structure
Table 2: Eclipse Global Clock Tree Delays Clock Segment Parameter Max. Rise tPGCK tBGCK Global clock pin delay to quad net Global clock buffer delay (quad net to flip flop) 0.990 0.534 Value (ns) Max. Fall 1.386 1.865
Programmable Clock External Clock
Global Clock Buffer
Global Clock
Clock Select tPGCK tBGCK
Figure 7: Global Clock Structure Schematic
4 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
[9:0] [17:0]
WA WD WE WCLK
RE RCLK RA RD ASYNCRD RAM Module [9:0] [17:0]
Figure 8: RAM Module
Table 3: RAM Cell Synchronous Write Timing Symbol RAM Cell Synchronous Write Timing tSWA tHWA tSWD tHWD tSWE tHWE tWCRD WA setup time to WCLK: time the WRITE ADDRESS must be stable before the active edge of the WRITE CLOCK WA hold time to WCLK: time the WRITE ADDRESS must be stable after the active edge of the WRITE CLOCK WD setup time to WCLK: time the WRITE DATA must be stable before the active edge of the WRITE CLOCK WD hold time to WCLK: time the WRITE DATA must be stable after the active edge of the WRITE CLOCK WE setup time to WCLK: time the WRITE ENABLE must be stable before the active edge of the WRITE CLOCK WE hold time to WCLK: time the WRITE ENABLE must be stable after the active edge of the WRITE CLOCK WCLK to RD (WA = RA): time between the active WRITE CLOCK edge and the time when the data is available at RD Parameter Value (ns) Min 0.675 ns 0 ns 0.654 ns 0 ns 0.276 ns 0 ns Max 2.796 ns
WCLK
WA tSWA WD tSWD WE tSWE RD old data tWCRD tHWE new data tHWD tHWA
Figure 9: RAM Cell Synchronous Write Timing
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
5
QL7180 EclipsePlus Data Sheet Rev C
Table 4: RAM Cell Synchronous & Asynchronous Read Timing Symbol RAM Cell Synchronous Read Timing tSRA tHRA tSRE tHRE tRCRD RA setup time to RCLK: time the READ ADDRESS must be stable before the active edge of the READ CLOCK RA hold time to RCLK: time the READ ADDRESS must be stable after the active edge of the READ CLOCK RE setup time to WCLK: time the READ ENABLE must be stable before the active edge of the READ CLOCK RE hold time to WCLK: time the READ ENABLE must be stable after the active edge of the READ CLOCK RCLK to RD: time between the active READ CLOCK edge and the time when the data is available at RD Parameter Value (ns) Min 0.686 ns 0 ns 0.243 ns 0 ns Max 2.225 ns
RAM Cell Asynchronous Read Timing rPDRD RA to RD: time between when the READ ADDRESS is input and when the DATA is output 2.405 ns
RCLK
RA tSRA RE tSRE RD old data tHRE new data tHRA
tRCRD rPDRD
Figure 10: RAM Cell Synchronous & Asynchronous Read Timing
6 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
+ INPUT REGISTER
QE R
D
OUTPUT REGISTER
D R
Q
PAD
OUTPUT ENABLE REGISTER
D
EQ R
Figure 11: EclipsePlus Cell I/O
tISU + tSID
QE R D
PAD
Figure 12: EclipsePlus Input Register Cell
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
7
QL7180 EclipsePlus Data Sheet Rev C
Table 5: Input Register Cell Symbol Input Register Cell Only tISU tIHL tICO tIRST tIESU tIEH Input register setup time: time the synchronous input of the pin must be stable before the active clock edge Input register hold time: time the synchronous input of the flip-flop must be stable after the active clock edge Input register clock-to-out: time taken by the flip-flop to output after the active clock edge Input register reset delay: time between when the flip-flop is "reset"(low) and when the output is consequently "reset" (low) Input register clock enable setup time: time "enable" must be stable before the active clock edge Input register clock enable hold time: time "enable" must be stable after the active clock edge Parameter Value (ns) Min 3.308 ns 0 ns 0.830 ns 0 ns Max 3.526 ns 0.494 ns 0.464 ns 0.987 ns -
Table 6: Standard Input Delays Symbol Standard Input Delays tSID (LVTTL) tSID (LVCMOS2) tSID (GTL+) tSID (SSTL3) tSID (SSTL2) Parameter To get the total input delay add this delay to tISU LVTTL input delay: Low Voltage TTL for 3.3 V applications LVCMOS2 input delay: Low Voltage CMOS for 2.5 V and lower applications GTL+ input delay: Gunning Transceiver Logic SSTL3 input delay: Stub Series Terminated Logic for 3.3 V SSTL2 input delay: Stub Series Terminated Logic for 2.5 V Value Min Max 0.34 ns 0.42 ns 0.68 ns 0.55 ns 0.61 ns
R
CLK
D
tISU
t t
IHL ICO t IRST
Q
E
t IESU t IEH
Figure 13: EclipsePlus Input Register Cell Timing 8 * www.quicklogic.com *
* * * *
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
PAD OUTPUT REGISTER
Figure 14: EclipsePlus Output Register Cell
Table 7: EclipsePlus Output Register Cell Symbol Output Register Cell Only tOUTLH tOUTHL tPZH tPZL tPHZ tPLZ tCOP Output Delay low to high (90% of H) Output Delay high to low (10% of L) Output Delay tri-state to high (90% of H) Output Delay tri-state to low (10% of L) Output Delay high to tri-State Output Delay low to tri-State Clock-to-out delay (does not include clock tree delays) Parameter Min Value Max 0.40 ns 0.55 ns 2.94 ns 2.34 ns 3.07 ns 2.53 ns 3.15 ns (fast slew) 10.2 ns (slow slew)
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
9
QL7180 EclipsePlus Data Sheet Rev C
H L H Z L H Z L
tOUTLH
H L H tPZH Z L H Z L
tOUTHL
tPZL tPHZ
tPLZ
Figure 15: EclipsePlus Output Register Cell Timing
Table 8: Output Slew Rates @ VCCIO = 3.3 V Fast Slew Rising Edge Falling Edge 2.8 V/ns 2.86 V/ns Slow Slew 1.0 V/ns 1.0 V/ns
Table 9: Output Slew Rates @ VCCIO = 2.5 V Fast Slew Rising Edge Falling Edge 1.7 V/ns 1.9 V/ns Slow Slew 0.6 V/ns 0.6 V/ns
NOTE: For tips to minimize ground bounce, refer to Application Note 66 at ht t p : // ww w. q ui ckl o gi c . c om /imag es/appnote 66.pdf .
10 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
DC Characteristics
The DC Specifications are provided in Table 10 through Table 13.
Table 10: Absolute Maximum Ratings Parameter
VCC Voltage VCCIO Voltage INREF Voltage Input Voltagea Latch-up Immunity
Value -0.5 V to 3.6 V -0.5 V to 4.6 V 2.7 V -0.5 V to VCCIO +0.5 V 100 mA
Parameter
DC Input Current ESD Pad Protection Leaded Package Storage Temperature Laminate Package (BGA) Storage Temperature
Value 20 mA 2000 V -65 C to + 150 C -55 C to + 125 C
a. All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped to the VCC rail, not the VCCIO. Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V).
Table 11: Operating Range Symbol Parameter Military Min VCC VCCIO TA TC Supply Voltage I/O Input Tolerance Voltage Ambient Temperature Case Temperature -4 Speed Grade K Delay Factor -5 Speed Grade -6 Speed Grade -7 Speed Grade 2.3 2.3 -55 0.42 0.42 0.42 0.42 125 2.3 1.92 1.35 1.27 Max 2.7 3.6 Industrial Min 2.3 2.3 -40 0.43 0.43 0.43 0.43 Max 2.7 3.6 85 2.16 1.80 1.26 1.19 Commercial Min 2.3 2.3 0 0.47 0.46 0.46 0.46 Max 2.7 3.6 70 2.11 1.76 1.23 1.16 V V C C n/a n/a n/a n/a Unit
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
11
QL7180 EclipsePlus Data Sheet Rev C
Table 12: DC Characteristics Symbol II IOZ CI IOS ICC ICCIO ICCIO(DIF) IREF IPD Parameter I or I/O Input Leakage Current 3-State Output Leakage Current Input Capacitance
a
Conditions VI = VCCIO or GND VI = VCCIO or GND Vo = GND Vo = VCC VI,Vo = VCCIO or GND VCCIO = 3.6 V
Min -10 -10 -15 40 0.50 (typ) 0 -10 -
Max 10 10 8 -180 210 2 2 10 150
Units A A pF mA mA mA mA mA A A
Output Short Circuit Currentb D.C. Supply Currentc D.C. Supply Current on VCCIO D.C. Supply Current on VCCIO for Differential I/O D.C. Supply Current on INREF Pad Pull-down (programmable)
a. Capacitance is sample tested only. Clock pins are 12 pF maximum. b. Only one output at a time. Duration should not exceed 30 seconds. c. For -4/-5/-6/-7 commercial grade devices only. See Table 13 for more details on ICC characteristics. Table 13: ICC Characteristics Temperature Characteristic Condition Commercial ICC VCCPLL = GND VCCPLL = VCC 2 mA (max) 3.25 mA (max) Industrial 3 mA (max) 5 mA (max) Military 5 mA (max) 10 mA (max)
NOTE: If PLLs are not used, the VCCPLL and PLLRST pins may be grounded to the lower ICC for the device.
12 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Embedded Computational Unit (ECU)
Traditional Programmable Logic architectures do not implement arithmetic functions efficiently or effectively--these functions require high logic cell usage while garnering only moderate performance results. The QL7180 architecture allows for functionality above and beyond that achievable using programmable logic devices. By embedding a dynamically reconfigurable computational unit, the QL7180 device can address various arithmetic functions efficiently. This approach offers greater performance than traditional programmable logic implementations. The embedded block is implemented at the transistor level as shown in
Figure 16.
RESET D S1 S2 S3 CIN SIGN1 SIGN2 00 01 3-1 mux 10 Q[0:16] 3-4 decoder C B A
A[0:7] A[8:15]
8-bit Multiplier
2-1 mux
16-bit Adder
D Q 17 inc. 17-bit COUT Register
A[0:15] CLK B[0:15] 2-1 mux
Figure 16: ECU Block Diagram
The 18 QL7180 ECU blocks are placed next to the SRAM circuitry for efficient memory/instruction fetch and addressing for DSP algorithmic implementations. Eighteen 8-bit MAC functions can be implemented per cycle for a total of 1.8 billion MACs when clocked at 100 MHz. Additional multiply-accumulate functions can be implemented in the programmable logic. The modes for the ECU block are dynamically re-programmable through the programmable logic.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
13
QL7180 EclipsePlus Data Sheet Rev C
Table 14: ECU Mode Select Criteria Instruction Operation S1 0 0 0 0 1 1 1 1 S2 0 0 1 1 0 0 1 1 S3 0 1 0 1 0 1 0 1 Multiply Multiply-Add Accumulatec Add Multiply (registered)d Multiply- Add (registered) Multiply - Accumulate Add (registered) 3.14 ns max 9.61 ns min 9.61 ns min 9.61 ns min 3.91 ns min 1.16 ns max 1.16 ns max 1.16 ns max 1.16 ns max ECU Performancea,
t
-7 WCCb
t
PD
t
SU
CO
6.57 ns max 8.84 ns max 3.91 ns min 1.16 ns max
a. tPD, tSU and tCO do not include routing paths in/out of the ECU block. b. Timing numbers represent -7 Worst Case Commercial conditions. c. Internal feedback path in ECU restricts max clk frequency to 238 MHz. d. B [15:0] set to zero.
14 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Phase Locked Loops (PLLs)
Instead of requiring extra components, designers simply need to instantiate one of the preconfigured models (described in this section). The QuickLogic built-in PLLs support a wider range of frequencies than many other PLLs. Also, QuickLogic PLLs can be cascaded to support different ranges of frequency multiplications or divisions, driving the device at a faster or slower rate than the incoming clock frequency. Most importantly, they achieve a very short clock-to-out time--generally less than 3 ns. This low clock-to-out time is achieved by the PLL subtracting the clock tree delay through the feedback path, effectively making the clock tree delay zero.
Figure 17 illustrates a typical QuickLogic ESP PLL.
1st Quadrant 2nd Quadrant 3rd Quadrant FIN Frequency Divide _ .1 . . _2 . . _4 . + Filter vco PLL Bypass 4th Quadrant Clock Tree
Frequency Multiply . _1 . . _2 . . _4 . FOUT
Figure 17: PLL Block
Fin represents a very stable high-frequency input clock and produces an accurate signal reference. This signal can either bypass the PLL entirely, thus entering the clock tree directly, or it can pass through the PLL itself. Within the PLL, a voltage-controlled oscillator (VCO) is added to the circuit. The external Fin signal and the local VCO form a control loop. The VCO is multiplied or divided down to the reference frequency, so that a phase detector (the crossed circle in Figure 17) can compare the two signals. If the phases of the external and local signals are not within the tolerance required, the phase detector sends a signal through the charge pump and loop filter (Figure 17). The charge pump generates an error voltage to bring the VCO back into alignment and the loop filter removes any high frequency noise before the error voltage enters the VCO. This new VCO signal enters the clock tree to drive the chip's circuitry.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
15
QL7180 EclipsePlus Data Sheet Rev C
Fout represents the clock signal that emerges from the output pad (the output signal PLLPAD_OUT is explained in Table 16). This clock signal is meaningful only when the PLL is configured for external use; otherwise, it remains in high Z state, as shown in the postsimulation waveform. Most QuickLogic products contain four PLLs, one to be used in each quadrant. The PLL presented in Figure 17 controls the clock tree in the fourth Quadrant of its ESP. As previously mentioned, QuickLogic PLLs compensate for the additional delay created by the clock tree itself by subtracting the clock tree delay through the feedback path. For more specific information on the Phase Locked Loops, please refer to Application Note 58 at ht t p : // ww w.q ui ckl o gi c . c o m /i m ag e s /ap p no te 5 8 . pd f
PLL Modes of Operation
QuickLogic PLLs have eight modes of operation, based on the input frequency and desired output frequency--Table 15 indicates the features of each mode.
Table 15: PLL Mode Frequencies PLL Model PLL_HF
b
Output Frequency Same as input frequency Same as input frequency 2
Input Frequency Rangea 66 MHz-150 MHz 25 MHz-133 MHz 50 MHz-125 MHz 16 MHz-50 MHz 100 MHz-250 MHz 50 MHz-100 MHz 16 MHz-40 MHz 100 MHz-300 MHz
Output Frequency Range 66 MHz-150 MHz 25 MHz-133 MHz 100 MHz-250 MHz 32 MHz-100 MHz 50 MHz-125 MHz 25 MHz-50 MHz 64 MHz-160 MHz 25 MHz-75 MHz
PLL_LF PLL_MULT2HF PLL_MULT2LF PLL_DIV2HF PLL_DIV2LF PLL_MULT4 PLL_DIV4
x input frequency
2 x input frequency 1/2 x input frequency 1/2 x input frequency 4
x input frequency
1/4 x input frequency
a. The input frequency can range from 12.5 MHz to 500 MHz, while output frequency ranges from 25 MHz to 250 MHz. When you add PLLs to your top-level design, be sure that the PLL mode matches your desired input and output frequencies. b. HF stands for high frequency and LF stands for low frequency.
16 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
PLL Signals
Table 16 summarizes the key signals in QuickLogic's PLLs.
Table 16: PLL Signals Signal Name PLLCLK_INa PLLRST Input clock signal Active High Reset If PLLRST is asserted, then CLKNET_OUT and PLLPAD_OUT are reset to 0. This signal must be asserted and then released in order for the LOCK_DETECT to work. PLL output This signal selects whether the PLL will drive the internal clock network or be used off-chip. This is a static signal, not a dynamic signal. ONn_OFFCHIP Tied to GND = outgoing signal drives internal gates. Tied to VCC = outgoing signal used off-chip. CLKNET_OUT Out to internal gates This signal bypasses the PLL logic before driving the internal gates. Note that this signal cannot be used in the same quadrant where the PLL signal is used (PLLCLK_OUT). Out from PLL to internal gates This signal can drive the internal gates after going through the PLL. For this to work, ONn_OFFCHIP must be tied to GND. Out to off-chip This outgoing signal is used off-chip. For this to work, ONn_OFFCHIP signal must be tied to VCC. Active High Lock detection signal NOTE: For simulation purposes, this signal gets asserted after 10 clock cycles. However, it can take a maximum of 200 clock cycles to sync with the input clock upon release of the RESET signal. Description
PLLCLK_OUT
PLLPAD_OUT
LOCK_DETECT
a. Because PLLCLK_IN and PLLRST signals have INPAD, and PLLPAD_OUT has OUT-
PAD, you do not have to add additional pads to your design.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
17
QL7180 EclipsePlus Data Sheet Rev C
I/O Characteristics
IOL vs VOL
180
Vccio = 3.6V
160 140 120
Vccio = 3.3V Vccio = 3.0V Vccio = 2.7V Vccio = 2.5V Vccio = 2.3V
Current (mA)
100 80 60 40 20 0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60
2.80
3.00
Supply voltage (V)
Figure 18: IOL vs. VOL
IOH vs VOH
20
0
3. 30 3. 50 2. 70 2. 90 3. 00 1. 90 2. 10 2. 30 0. 50 0. 90 1. 30 1. 50 0. 00 0. 10 0. 30 1. 70 0. 70 1. 10 2. 50 3. 10 3. 60
-20
Current (mA)
-40
VccI/O = 2.3V VccI/O = 2.5V
-60
VccI/O = 2.7V VccI/0 = 3.0V VccI/O = 3.3V
-80
-100
VccI/O = 3.6V
-120
Supply voltage (V)
Figure 19: IOH vs. VOH
18 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Table 17: DC Input and Output Levelsa INREF VMIN LVTTL LVCMOS2 GTL+ PCI SSTL2 SSTL3 n/a n/a 0.88 n/a 1.15 1.3 VMAX n/a n/a 1.12 n/a 1.35 1.7 VMIN -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 VIL VMAX 0.8 0.7 INREF - 0.2 0.3 x VCCIO INREF - 0.18 INREF - 0.2 VMIN 2.0 1.7 INREF + 0.2 0.5 x VCCIO INREF + 0.18 INREF + 0.2 VIH VMAX VCCIO + 0.3 VCCIO + 0.3 VCCIO + 0.3 VCCIO + 0.5 VCCIO + 0.3 VCCIO + 0.3 VOL VMAX 0.4 0.7 0.6 0.1 x VCCIO 0.74 1.10 VOH VMIN 2.4 1.7 n/a 0.9 x VCCIO 1.76 1.90 IOL mA 2.0 2.0 40 1.5 7.6 8 IOH mA -2.0 -2.0 n/a -0.5 -7.6 -8
a. The data provided in Table 17 are JEDEC and PCI Specifications. QuickLogic devices either meet or exceed these
requirements. For data specific to QuickLogic I/Os, see Table 1 through Table 13 and Figure 1 through Figure 17
NOTE: All CLK and IOCTRL pins are clamped to the VCC rail, not the VCCIO. Therefore, these pins
can only be driven up to VCC + 0.3 V.
NOTE: All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped to the VCC rail, not the VCCIO. Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V).
Table 18: Max I/O per Device /Package Combination Device QL7180 280 BGA 163 484 BGA 327 516 BGA 347
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
19
QL7180 EclipsePlus Data Sheet Rev C
Package Thermal Characteristics
Thermal Resistance Equations:
JC = (TJ - TC)/P JA = (TJ - TA)/P
PMAX = (TJMAX - TAMAX)/
JA
Parameter Description:
JC: Junction-to-case thermal resistance JA: Junction-to-ambient thermal resistance
TJ: Junction temperature TA: Ambient temperature P: Power dissipated by the device while operating PMAX: The maximum power dissipation for the device TJMAX: Maximum junction temperature TAMAX: Maximum ambient temperature NOTE: Maximum junction temperature (TJMAX) is 150 C. To calculate the maximum power
dissipation for a device package look up JA from Table 19, pick an appropriate TAMAX and use:
PMAX = (150 C - TAMAX)/
JA
Table 19: Package Thermal Characteristics Package Description Pin Count Package Type 516 484 280 PBGA PBGA LF-PBGA
JA (C/W) @ various flow rates (m/sec) JC (C/W)
0 20.0 28.0 18.5 0.5 19.0 26.0 17.0 1 17.5 25.0 15.5 2 16.0 23.0 14.0 7.0 9.0 7.0
20 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Kv and Kt Graphs
Voltage Factor vs. Supply Voltage
1.1000 1.0800 1.0600 1.0400 Kv 1.0200 1.0000 0.9800 0.9600 0.9400 0.9200 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75
Supply Voltage (V)
Figure 20: Voltage Factor vs. Supply Voltage
Temperature Factor vs. Operating Temperature
1.15 1.10 1.05
Kt
1.00 0.95 0.90 0.85 -60
-40
-20
0
20
40
60
80
Junction Temperature C
Figure 21: Temperature Factor vs. Operating Temperature
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
21
QL7180 EclipsePlus Data Sheet Rev C
Power vs. Operating Frequency
The basic power equation which best models power consumption is given below:
PTOTAL = 0.350 + f[0.0031 LC + 0.0948 CKBF + 0.01 CLBF + 0.0263 0.543 RAM + 0.20 PLL + 0.0035 INP + 0.0257 OUTP] (mW)
CKLD +
Where
* * * * * * *
LC is the total number of logic cells in the design CKBF = # of clock buffers CLBF = # of column clock buffers CKLD = # of loads connected to the column clock buffers RAM = # of RAM blocks PLL = # of PLLs
INP is the number of input pins * OUTP is the number of output pins
Figure 22 exhibits the power consumption in an EclipsePlus QL7180 device. The chip was
filled with (300) 8-bit countersapproximately 76% logic cell utilization.
2.5
Power vs Freq. (Counter_300)
2
Power (W)
1.5
1
0.5
0
0
20
40
60
80
100
120
140
Frequency (Mhz)
Figure 22: Power Consumption Figure 23 illustrates the theoretical worst-case scenarios for 50%, 70%, and 90% utilizations
of the 6500-516 package. The resources of the device are divided exactly in half; meaning, for 50% utilization, exactly 50% of the I/Os, Logic Cells, RAM blocks, clock network, etc. are utilized. These situations may never occur in a real design, but they do provide a very rough quantitative measure of power consumption when talking in terms of 50% or 70% utilization of an EclipsePlus device.
22 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Power vs. Frequency 7 6 5 Power (W) 4 3 2 1 0
0
50
100
150 Frequency (Mhz) 50% 70% 90%
200
250
300
Figure 23: Power vs. Frequency (Absolute 50%, 70%, and 90% of the Available Resources on Chip)
To learn more about power consumption, please refer to application note #60 which is located at http://www.quicklogic.com/images/appnote60.pdf.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
23
QL7180 EclipsePlus Data Sheet Rev C
Power-up Sequencing
VCCIO
Voltage
VCC (VCCIO -VCC)MAX VCC
400 us
Figure 24: Power-up Requirements
When powering up a device, the VCC/VCCIO rails must take 400 s or longer to reach the maximum value (refer to Figure 24). NOTE: Ramping VCC/VCCIO to the maximum voltage faster than 400 s can cause the device to behave improperly. For users with a limited power budget, keep (VCCIO -VCC)MAX 500 mV when ramping up the power supply.
24 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Joint Test Access Group (JTAG)
TCK TMS TRSTB
TAp Controller State Machine (16 States)
Instruction Decode & Control Logic
Instruction Register
RDI
Mux Boundary-Scan Register (Data Register)
Mux
TDO
Bypass Register
Internal Register
I/O Registers
User Defined Data Register
Figure 25: JTAG Block Diagram
Microprocessors and Application Specific Integrated Circuits (ASICs) pose many design challenges, one problem being the accessibility of test points. The Joint Test Access Group (JTAG) formed in response to this challenge, resulting in IEEE standard 1149.1, the Standard Test Access Port and Boundary Scan Architecture. The JTAG boundary scan test methodology allows complete observation and control of the boundary pins of a JTAG-compatible device through JTAG software. A Test Access Port (TAP) controller works in concert with the Instruction Register (IR), which allow users to run three required tests along with several user-defined tests. JTAG tests allow users to reduce system debug time, reuse test platforms and tools, and reuse subsystem tests for fuller verification of higher level system elements.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
25
QL7180 EclipsePlus Data Sheet Rev C
The 1149.1 standard requires the following three tests:
* Extest Instruction. The Extest instruction performs a PCB interconnect test. This test
places a device into an external boundary test mode, selecting the boundary scan register to be connected between the TAP's Test Data In (TDI) and Test Data Out (TDO) pins. Boundary scan cells are preloaded with test patterns (via the Sample/Preload Instruction), and input boundary cells capture the input data for analysis.
* Sample/Preload Instruction. This instruction allows a device to remain in its
functional mode, while selecting the boundary scan register to be connected between the TDI and TDO pins. For this test, the boundary scan register can be accessed via a data scan operation, allowing users to sample the functional data entering and leaving the device.
* Bypass Instruction. The Bypass instruction allows data to skip a device's boundary
scan entirely, so the data passes through the bypass register. The Bypass instruction allows users to test a device without passing through other devices. The bypass register is connected between the TDI and TDO pins, allowing serial data to be transferred through a device without affecting the operation of the device.
26 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Pin Descriptions
Table 20: JTAG Pin Descriptions Pin TDI/RSI TRSTB/RRO TMS TCK TDO/RCO Function Test Data In for JTAG/RAM init. Serial Data In Active low Reset for JTAG/RAM init. reset out Test Mode Select for JTAG Test Clock for JTAG Test data out for JTAG/RAM init. clock out Description Hold HIGH during normal operation. Connects to serial PROM data in for RAM initialization. Connect to VCC if unused Hold LOW during normal operation. Connects to serial PROM reset for RAM initialization. Connect to GND if unused Hold HIGH during normal operation. Connect to VCC if not used for JTAG Hold HIGH or LOW during normal operation. Connect to VCC or ground if not used for JTAG Connect to serial PROM clock for RAM initialization. Must be left unconnected if not used for JTAG or RAM initialization
NOTE: All JTAG inputs are clamped to the VCC rail, not the VCCIO. Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V). All JTAG outputs are driven by the VCC rail, not VCCIO. Therefore, these output pins can only drive up to VCC + 0.3 V. These output pins are LVCMOS2 compliant only (2.5 V).
IOCTRL(A) IOCTRL(A)
VCCIO (A) INREF(A)
VCCIO (A) INREF(A)
IO(A)
IO BANK A VCCIO (H) INREF(H) IOCTRL(H) IO(H)
IO BANK B VCCIO (C) INREF(C) IOCTRL(C) IO(C)
IO BANK H
IO(A)
IO BANK C
IO BANK G
VCCIO (G) INREF(G) IOCTRL(G) IO(G)
VCCIO (D) INREF(D) IOCTRL(D) IO(D)
IO BANK D
IO BANK F
IO BANK E
INREF(E)
IO(E)
INREF(F)
IO(F)
VCCIO (E)
IOCTRL(E)
Figure 26: I/O Banks with Relevant Pins
VCCIO (F)
IOCTRL(F)
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
27
QL7180 EclipsePlus Data Sheet Rev C
Table 21: Dedicated Pin Descriptions Pin Direction Function Description Low skew global clock. This pin provides access to a dedicated, distributed network capable of driving the CLOCK, SET, RESET, F1, and A2 inputs to the Logic Cell, READ, and WRITE CLOCKS, Read and Write Enables of the Embedded RAM Blocks, CLOCK of the ECUs, and Output Enables of the I/Os. The I/O pin is a bi-directional pin, configurable to either an inputonly, output-only, or bi-directional pin. The A inside the parenthesis means that the I/O is located in Bank A. If an I/O is not used, SpDE (QuickWorks Tool) provides the option of tying that pin to GND, VCC, or TriState during programming. Connect to 2.5 V supply This pin provides the flexibility to interface the device with either a 3.3 V device or a 2.5 V device. The A inside the parenthesis means that VCCIO is located in BANK A. Every I/O pin in Bank A will be tolerant of VCCIO input signals and will output VCCIO level signals. This pin must be connected to either 3.3 V or VCC.
CLKa
I
Global clock network driver
I/O(A)
I/O
Input/Output pin
VCC
I
Power supply pin
VCCIO(A)
I
Input voltage tolerance pin
VCCPLL
b
I
Connect to 2.5 V supply. VCCPLL should be connected to 2.5 V Phase locked loop power supply supply if the PLLs are used. If the PLLs are not used, VCCPLL can be connected to 2.5 V supply or GND. See Table 13 for for ICC pin differences when VCCPLL is connected to 2.5 V or GND. Ground pin PLL clock input Dedicated clock pin Ground pin for PLL Connect to ground Clock input for PLL Low skew global clock. This pin provides access to a dedicated, distributed clock network capable of driving the CLOCK inputs of all sequential elements of the device (e.g. RAM, Flip Flops). Connect to GND The INREF is the reference voltage pin for GTL+, SSTL2, and STTL3 standards. Follow the recommendations provided in Table 17 for the appropriate standard. The A inside the parenthesis means that INREF is located in BANK A. This pin should be tied to GND if not needed. Dedicated PLL output pin. Otherwise may be left unconnected Reset input for PLL. If PLLs are not used, PLLRST should be connected to the same voltage as VCCPLL (e.g., VCC or GND). This pin provides fast RESET, SET, CLOCK, and ENABLE access to the I/O cell flip-flops, providing fast clock-to-out and fast I/O response times. This pin can also double as a high-drive pin to the internal logic cells. The A inside the parenthesis means that IOCTRL is located in Bank A. This pin should be tied to GND or VCC if it is not used.
GND PLLINa DEDCLKa GNDPLL
I I I I
INREF(A)
I
Differential reference voltage
PLLOUT PLLRSTa
O I
PLL output pin Reset input pin for PLL
IOCTRL(A)a
I
Highdrive input
a. All dedicated inputs including the CLK, DEDCLK, PLLIN, PLLRST, and IOCTRL pins, are clamped to the VCC rail, not the VCCIO. Therefore, these pins can only be driven up to VCC + 0.3 V. These input pins are LVCMOS2 compliant only (2.5 V). b. All PLLOUT output pins are driven by the VCC rail, not the VCCIO rail. These output pins are LVCMOS2 compliant only (2.5 V).
28 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Recommended Unused Pin Terminations for the EclipsePlus devices
All unused, general purpose I/O pins can be tied to VCC, GND, or HIZ (high impedance) internally using the Configuration Editor. This option is given in the bottom-right corner of the placement window. To use the Placement Editor, choose Constraint > Fix Placement in the Option pull-down menu of SpDE. The rest of the pins should be terminated at the board level in the manner presented in
Table 22.
Table 22: Recommended Unused Pin Terminations Signal Name PLLOUTa IOCTRLb CLK/PLLIN PLLRST Recommended Termination Unused PLL output pins must be connected to either VCC or GND so that their associated input buffer never floats. Utilized PLL output pins that route the PLL clock outside of the chip should not be tied to either VCC or GND. Any unused pins of this type must be connected to either VCC or GND. Any unused clock pins should be connected to VCC or GND. If a PLL module is not used, then the associated PLLRST must be connected to VCC; under normal operation, use it as needed. If PLLs are not used, the associated PLLRST pin must be connected to the same voltage as VCCPLL (2.5 V or GND). If an I/O bank does not require the use of INREF signal the pin should be connected to GND.
INREF
a. x represents a number. b. y represents an alphabetical character.
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
29
QL7180 EclipsePlus Data Sheet Rev C
280 PBGA Pinout Diagram
Top
EclipsePlus QL7180-4PT280C
Bottom
Pin A1 Corner
30 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
280 PBGA Pinout Table
Table 23: 280 PBGA Pinout Table
PBGA A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 C1 C2 C3 C4 C5 C6 C7 C8 C9 Function
PLLOUT<3> GNDPLL<0> I/O I/O I/O IOCTRL I/O I/O I/O CLK<7> I/O I/O I/O IOCTRL I/O I/O I/O PLLRST<1> GND PLLRST<0> GND I/O I/O I/O INREF I/O I/O TMS CLK<6> I/O I/O IOCTRL I/O I/O I/O VCCPLL<1> GNDPLL<1> PLLOUT<0> I/O VCCPLL<0> I/O I/O VCCIO IOCTRL I/O I/O VCCIO
PBGA C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18
Function
CLK<5>/PLLI N<3> VCCIO I/O I/O I/O VCCIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLK<8> I/O I/O I/O INREF I/O I/O I/O I/O I/O I/O I/O I/O VCCIO I/O GND VCC VCC VCC VCC GND GND VCC VCC GND GND I/O VCCIO INREF
PBGA E19 F1 F2 F3 F4 F5 F15 F16 F17 F18 F19 G1 G2 G3 G4 G5 G15 G16 G17 G18 G19 H1 H2 H3 H4 H5 H15 H16 H17 H18 H19 J1 J2 J3 J4 J5 J15 J16 J17 J18 J19 K1 K2 K3 K4 K5 K15
Function
IOCTRL INREF IOCTRL I/O I/O GND VCC IOCTRL I/O I/O I/O I/O I/O IOCTRL I/O VCC VCC I/O I/O I/O I/O I/O I/O I/O I/O VCC VCC VCC I/O I/O I/O I/O I/O VCCIO I/O GND VCC I/O VCCIO I/O I/O VCC TCK I/O I/O GND GND
PBGA K16 K17 K18 K19 L1 L2 L3 L4 L5 L15 L16 L17 L18 L19 M1 M2 M3 M4 M5 M15 M16 M17 M18 M19 N1 N2 N3 N4 N5 N15 N16 N17 N18 N19 P1 P2 P3 P4 P5 P15 P16 P17 P18 P19 R1 R2 R3
Function
I/O I/O I/O TRSTB I/O I/O VCCIO I/O VCC GND I/O VCCIO I/O I/O I/O I/O I/O I/O VCC VCC INREF I/O I/O I/O IOCTRL I/O I/O I/O VCC VCC I/O I/O IOCTRL IOCTRL I/O I/O IOCTRL INREF VCC GND I/O I/O I/O I/O I/O I/O VCCIO
PBGA R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
Function
I/O GND GND VCC VCC GND GND VCC VCC VCC VCC GND I/O VCCIO I/O I/O I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O CLK<3>/PLLI N<1> I/O I/O I/O I/O I/O VCCPLL<2> I/O I/O I/O I/O VCCPLL<3> I/O VCCIO INREF I/O I/O VCCIO CLK<0> VCCIO I/O
PBGA U13 U14 U15 U16 U17 U18 U19 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19
Function
I/O IOCTRL VCCIO I/O TDO PLLRST<2> I/O PLLOUT<2> GNDPLL<3> GND I/O
I/O IOCTRL I/O I/O I/O CLK<1> CLK<4>DEDC LK/PLLIN<0> I/O I/O INREF I/O I/O I/O GNDPLL<2> GND GND PLLRST<3> I/O I/O I/O I/O I/O I/O TDI CLK<2>/PLLI N<2> I/O I/O I/O IOCTRL I/O I/O I/O I/O PLLOUT<1>
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
31
QL7180 EclipsePlus Data Sheet Rev C
280 PBGA Packaging Drawing
Figure 27: 280 PBGA Packaging Drawing
32 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
484 PBGA Pinout Diagram
Top
EclipsePlus QL7180-4PS484C
Bottom
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB
Pin A1 Corner
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
33
QL7180 EclipsePlus Data Sheet Rev C
484 PBGA Pinout Table
Table 24: 484 PBGA Pinout Table
PBGA A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 Function
I/O PLLRST<3> I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O TCK I/O I/O I/O I/O I/O I/O I/O GND PLLOUT<3> I/O I/O GND GNDPLL<3> GND I/O I/O I/O INREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PLLRST<0> I/O I/O I/O
PBGA C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22
Function
I/O
I/O VCCPLL<3> PLLOUT<2> I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GNDPLL<0> I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O VCCPLL<0> I/O I/O I/O
PBGA E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22
Function
IOCTRL
I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O I/O I/O IOCTRL I/O INREF I/O I/O I/O I/O I/O I/O INREF I/O I/O I/O VCCIO VCCIO I/O VCCIO I/O VCCIO VCCIO I/O VCCIO I/O VCCIO I/O I/O I/O IOCTRL I/O IOCTRL
PBGA G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22
Function
I/O
I/O I/O I/O I/O I/O GND I/O I/O I/O I/O GND I/O I/O I/O GND VCCIO I/O I/O I/O INREF I/O I/O I/O I/O I/O IOCTRL VCCIO I/O GND VCC VCC VCC GND VCC VCC GND I/O I/O I/O I/O I/O I/O I/O
PBGA J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22
Function
I/O
I/O I/O I/O I/O I/O I/O VCC GND VCC VCC GND VCC GND VCC I/O VCCIO I/O I/O I/O I/O I/O TDI I/O I/O I/O I/O VCCIO I/O VCC VCC GND GND GND GND VCC VCC I/O I/O I/O I/O I/O I/O I/O
PBGA L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22
Function
CLK<4> DEDCLK/PLLIN<0> CLK<0> CLK<2>/PLLIN<2> I/O
I/O I/O GND GND GND GND GND GND GND VCC VCC CLK<6> VCCIO I/O CLK<8> I/O I/O I/O I/O I/O I/O CLK<3>/PLLIN<1> I/O VCCIO CLK<1> VCC VCC GND GND GND GND GND GND GND I/O I/O I/O CLK<7> CLK<5>/PLLIN<3> TMS
(Sheet 1 of 2)
34 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Table 24: 484 PBGA Pinout Table (Continued)
PBGA N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Function
I/O I/O I/O I/O I/O I/O I/O VCC VCC GND GND GND GND VCC VCC I/O VCCIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCIO I/O VCC GND VCC GND VCC VCC GND VCC
PBGA P16 P17 P18 P19 P20 P21 P22 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 T1 T2 T3 T4 T5 T6 T7 T8
Function
I/O I/O I/O I/O I/O I/O I/O I/O INREF I/O I/O I/O I/O I/O GND VCC VCC GND VCC VCC VCC GND I/O VCCIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCIO GND I/O
PBGA T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 V1
Function
I/O TRSTB GND I/O I/O I/O I/O GND I/O I/O I/O I/O IOCTRL I/O IOCTRL I/O IOCTRL I/O I/O I/O VCCIO I/O VCCIO I/O VCCIO VCCIO I/O VCCIO I/O VCCIO VCCIO I/O I/O IOCTRL I/O INREF I/O
PBGA V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16
Function
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O I/O I/O INREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
PBGA W17 W18 W19 W20 W21 W22 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9
Function
I/O I/O I/O I/O I/O I/O I/O I/O VCCPLL<2> I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O PLLOUT<0> PLLRST<1> I/O I/O TDO PLLOUT<1> GND I/O I/O I/O I/O INREF I/O
PBGA AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22
Function
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GNDPLL<1> I/O I/O I/O GNDPLL<2> PLLRST<2> I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O GND VCCPLL<1> I/O
(Sheet 2 of 2)
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
35
QL7180 EclipsePlus Data Sheet Rev C
484 PBGA Packaging Drawing
Figure 28: 484 PBGA Packaging Drawing
36 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
516 PBGA Pinout Diagram
Top
EclipsePlus QL7180-4PB516C
Bottom
PIN A1 CORNER
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
37
QL7180 EclipsePlus Data Sheet Rev C
516 PBGA Pinout Table
Table 25: 516 PBGA Pinout Table
PBGA A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 Function
GND I/O I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O IOCTRL IOCTRL I/O I/O I/O I/O I/O PLLRST<1> GND I/O PLLRST<0> I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O CLK<5> /PLLIN<3> I/O I/O I/O I/O INREF I/O I/O I/O I/O I/O I/O I/O PLLOUT<0>
PBGA C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26
Function
I/O I/O I/O PLLOUT<3> I/O I/O I/O INREF I/O I/O I/O I/O CLK<7> I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GNDPLL<0> I/O I/O I/O I/O I/O I/O I/O TMS I/O I/O I/O I/O I/O CLK<8> I/O I/O I/O VCCPLL<1> I/O I/O I/O
PBGA E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26
Function
I/O I/O I/O VCCPLL<0> I/O I/O I/O VCC I/O I/O I/O VCC I/O I/O I/O VCC CLK<6> I/O I/O I/O I/O I/O GNDPLL<1> I/O I/O I/O IOCTRL I/O I/O I/O I/O GND VCCIO VCC VCCIO GND VCC VCCIO GND VCCIO VCC VCC GND VCCIO VCC VCCIO GND I/O I/O I/O I/O I/O
PBGA G1 G2 G3 G4 G5 G6 G21 G22 G23 G24 G25 G26 H1 H2 H3 H4 H5 H6 H21 H22 H23 H24 H25 H26 J1 J2 J3 J4 J5 J6 J21 J22 J23 J24 J25 J26 K1 K2 K3 K4 K5 K6 K21 K22 K23 K24 K25 K26 L1 L2 L3 L4
Function
I/O INREF I/O I/O I/O VCCIO VCCIO I/O I/O I/O I/O INREF I/O I/O IOCTRL I/O I/O VCC VCC VCC I/O IOCTRL IOCTRL I/O I/O I/O I/O I/O I/O VCCIO VCCIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND GND I/O I/O I/O I/O I/O I/O I/O I/O I/O
PBGA L5 L6 L11 L12 L13 L14 L15 L16 L21 L22 L23 L24 L25 L26 M1 M2 M3 M4 M5 M6 M11 M12 M13 M14 M15 M16 M21 M22 M23 M24 M25 M26 N1 N2 N3 N4 N5 N6 N11 N12 N13 N14 N15 N16 N21 N22 N23 N24 N25 N26 P1 P2
Function
VCC VCC GND GND GND GND GND GND VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCIO GND GND GND GND GND GND VCCIO VCC I/O I/O I/O I/O TCK I/O I/O I/O I/O GND GND GND GND GND GND GND GND I/O I/O I/O I/O I/O I/O I/O
PBGA P3 P4 P5 P6 P11 P12 P13 P14 P15 P16 P21 P22 P23 P24 P25 P26 R1 R2 R3 R4 R5 R6 R11 R12 R13 R14 R15 R16 R21 R22 R23 R24 R25 R26 T1 T2 T3 T4 T5 T6 T11 T12 T13 T14 T15 T16 T21 T22 T23 T24 T25 T26
Function
I/O VCC I/O VCCIO GND GND GND GND GND GND VCCIO I/O VCC I/O I/O TRSTB I/O I/O I/O I/O VCC VCC GND GND GND GND GND GND VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC GND GND GND GND GND GND VCC VCC I/O I/O I/O I/O
(Sheet 1 of 2)
38 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Table 25: 516 PBGA Pinout Table (Continued)
PBGA U1 U2 U3 U4 U5 U6 U21 U22 U23 U24 U25 U26 V1 V2 V3 V4 V5 V6 V21 V22 V23 V24 V25 V26 W1 W2 W3 W4 W5 W6 W21 W22 W23 W24 Function
I/O I/O I/O I/O I/O GND GND I/O I/O I/O I/O I/O I/O IOCTRL IOCTRL I/O I/O VCCIO VCCIO I/O I/O IOCTRL I/O I/O INREF I/O I/O I/O VCC VCC VCC I/O I/O I/O
PBGA W25 W26 Y1 Y2 Y3 Y4 Y5 Y6 Y21 Y22 Y23 Y24 Y25 Y26 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA17 AA18 AA19 AA20
Function
INREF I/O I/O I/O I/O I/O I/O VCCIO VCCIO I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O GND VCCIO VCC VCCIO GND VCC VCCIO GND VCCIO VCC VCC GND VCCIO VCC VCCIO
PBGA AA21 AA22 AA23 AA24 AA25 AA26 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AB26 AC1 AC2
Function
GND VCCPLL<2> I/O I/O I/O I/O I/O I/O I/O
GNDPLL<3> VCCPLL<3> I/O I/O I/O I/O I/O VCC I/O I/O CLK<3>/PLLIN<1> VCC I/O I/O I/O VCC I/O I/O GNDPLL<2> I/O I/O I/O I/O I/O I/O
PBGA AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10
Function
I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLK<1> I/O I/O I/O I/O I/O I/O I/O TDO PLLOUT<1> I/O I/O I/O I/O PLLOUT<2> PLLRST<3> I/O I/O I/O I/O IOCTRL I/O I/O
PBGA AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18
Function
I/O
TDI CLK<4> DEDCLK/PLLIN<0> I/O I/O I/O I/O INREF I/O I/O I/O I/O I/O GND I/O I/O GND GND I/O I/O I/O I/O INREF I/O I/O I/O I/O CLK<0> I/O I/O I/O I/O I/O I/O
PBGA AE19 AE20 AE21 AE22 AE23 AE24 AE25 AE26 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21 AF22 AF23 AF24 AF25 AF26
Function
I/O I/O I/O I/O I/O I/O PLLRST<2> I/O I/O
I/O I/O I/O I/O IOCTRL I/O I/O I/O I/O I/O CLK<2> /PLLIN<2> I/O I/O I/O I/O I/O I/O IOCTRL IOCTRL I/O I/O I/O I/O I/O I/O
(Sheet 2 of 2)
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
39
QL7180 EclipsePlus Data Sheet Rev C
516 PBGA Packaging Drawing
Figure 29: 516 PBGA Packaging Drawing
40 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation
QL7180 EclipsePlus Data Sheet Rev C
Ordering Information
QL 7180 - 4 PB516 C QuickLogic Device EclipsePlus Device Part Number Speed Grade 4 = Quick 5 = Fast 6 = Faster 7 = Fastest Operating Range C = Commercial I = Industrial M = Military Package Code PT280 = 280-pin LFBGA (0.8mm) PS484 = 484-pin FPBGA (1.0 mm) PB516 = 516-pin BGA (1.27 mm)
Contact Information
Telephone: (408) 990 4000 (US) (416) 497 8884 (Canada) +(44) 1932 57 9011 (Rest of Europe) +(49) 89 930 86 170 (Germany & Benelux) +(8621) 2890 3029 (Asia) +(81) 45 470 5525 (Japan) E-mail: Support: Web site:
info@quicklogic.com support@quicklogic.com http://www.quicklogic.com/
(c) 2003 QuickLogic Corporation
www.quicklogic.com * *
* * * *
41
QL7180 EclipsePlus Data Sheet Rev C
Revision History
Table 26: Revision History Revision A B C Date Aug 2002 April 2003 May 2003 Comments Brian Faith, Judd Heape, Andreea Rotaru, Paul Micallef Brian Faith, Kathleen Murchek Incorporated comments, added PLL section, removed 672 pinout diagram, table, and pkg. dwg. Brian Faith, Kathleen Murchek
Copyright Information
Copyright (c) 2002 QuickLogic Corporation. All Rights Reserved. The information contained in this product brief, and the accompanying software programs are protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic Corporation reserves the right to make periodic modifications of this product without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of QuickLogic is prohibited. QuickLogic, QuickWorks, pASIC, and ViaLink are registered trademarks of QuickLogic Corporation. All trademarks and registered trademarks are the property of their respective owners.
42 * www.quicklogic.com *
* * *
*
(c) 2003 QuickLogic Corporation


▲Up To Search▲   

 
Price & Availability of QL7180

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X